用python浅易的制作蝴蝶、星星、心心聚色网。
图片聚色网
图片
图片
第一步,装配三个python 插件:
pip install numpy pip install opencv-python pip install pyyaml
第二步,主python代码:
王竹子 露出天天影院网 halo_len, replace=True, p=[0.7, 0.2, 0.1]) point_size = np.concatenate((point_size, p_size), 0) tag_ = np.ones(halo_len) * 2 * 3 tag = np.concatenate((tag, tag_), 0) x_y = np.around(np.stack([x, y], axis=1), 0) x, y = x_y[:, 0], x_y[:, 1] return x, y, point_size, tag def get_frames(self, shape_func): for frame_idx in range(self.frame_num): np.random.seed(self.seed_num) self.frame_points.append(self.gen_points(self.seed_points_num, frame_idx, shape_func)) frames = [] def add_points(frame, x, y, size, tag): highlight1 = np.array(self.highlight_points_color_1, dtype='uint8') highlight2 = np.array(self.highlight_points_color_2, dtype='uint8') base_col = np.array(self.base_color, dtype='uint8') x, y = x.astype(int), y.astype(int) frame[y, x] = base_col size_2 = np.int64(size == 2) frame[y, x + size_2] = base_col frame[y + size_2, x] = base_col size_3 = np.int64(size == 3) frame[y + size_3, x] = base_col frame[y - size_3, x] = base_col frame[y, x + size_3] = base_col frame[y, x - size_3] = base_col frame[y + size_3, x + size_3] = base_col frame[y - size_3, x - size_3] = base_col # frame[y - size_3, x + size_3] = color # frame[y + size_3, x - size_3] = color # 高光 random_sample = np.random.choice([1, 0], size=tag.shape, p=[self.highlight_rate, 1 - self.highlight_rate]) # tag2_size1 = np.int64((tag <= 2) & (size == 1) & (random_sample == 1)) # frame[y * tag2_size1, x * tag2_size1] = highlight2 tag2_size2 = np.int64((tag <= 2) & (size == 2) & (random_sample == 1)) frame[y * tag2_size2, x * tag2_size2] = highlight1 # frame[y * tag2_size2, (x + 1) * tag2_size2] = highlight2 # frame[(y + 1) * tag2_size2, x * tag2_size2] = highlight2 frame[(y + 1) * tag2_size2, (x + 1) * tag2_size2] = highlight2 for x, y, size, tag in self.frame_points: frame = np.zeros([self.frame_height, self.frame_width, 3], dtype="uint8") add_points(frame, x, y, size, tag) frames.append(frame) return frames def draw(self, times=10): frames = self.get_frames(self.curve_function(self.curve)) for i in range(times): for frame in frames: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) if len(self.bg_imgs) > 0 and self.set_bg_imgs: frame = cv2.addWeighted(self.bg_imgs[i % len(self.bg_imgs)], self.bg_weight, frame, self.curve_weight, 0) cv2.imshow(self.title, frame) cv2.waitKey(self.wait) if __name__ == '__main__': import yaml settings = yaml.load(open("./settings.yaml", "r", encoding="utf-8"), Loader=yaml.FullLoader) if settings["wait"] == -1: settings["wait"] = int(settings["period_time"] / settings["frame_num"]) del settings["period_time"] times = settings["times"] del settings["times"] heart = HeartSignal(seed_num=5201314, **settings) heart.draw(times)" cm-theme="neo" cm-mode="Python"># -*- coding:utf-8 -*- # @Time : 2023.1 # @Author : Amadeus # @Note : 蝴蝶、星星、心心 from math import cos, pi import numpy as np import cv2 import os, glob class HeartSignal: def __init__(self, curve="heart", title="Love U", frame_num=20, seed_points_num=2000, seed_num=None, highlight_rate=0.3, background_img_dir="", set_bg_imgs=False, bg_img_scale=0.2, bg_weight=0.3, curve_weight=0.7, frame_width=1080, frame_height=960, scale=10.1, base_color=None, highlight_points_color_1=None, highlight_points_color_2=None, wait=100, n_star=5, m_star=2): super().__init__() self.curve = curve self.title = title self.highlight_points_color_2 = highlight_points_color_2 self.highlight_points_color_1 = highlight_points_color_1 self.highlight_rate = highlight_rate self.base_color = base_color self.n_star = n_star self.m_star = m_star self.curve_weight = curve_weight img_paths = glob.glob(background_img_dir + "/*") self.bg_imgs = [] self.set_bg_imgs = set_bg_imgs self.bg_weight = bg_weight if os.path.exists(background_img_dir) and len(img_paths) > 0 and set_bg_imgs: for img_path in img_paths: img = cv2.imread(img_path) self.bg_imgs.append(img) first_bg = self.bg_imgs[0] width = int(first_bg.shape[1] * bg_img_scale) height = int(first_bg.shape[0] * bg_img_scale) first_bg = cv2.resize(first_bg, (width, height), interpolation=cv2.INTER_AREA) # 对都图片,自动裁切中间 new_bg_imgs = [first_bg, ] for img in self.bg_imgs[1:]: width_close = abs(first_bg.shape[1] - img.shape[1]) < abs(first_bg.shape[0] - img.shape[0]) if width_close: # resize height = int(first_bg.shape[1] / img.shape[1] * img.shape[0]) width = first_bg.shape[1] img = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) # crop and fill if img.shape[0] > first_bg.shape[0]: crop_num = img.shape[0] - first_bg.shape[0] crop_top = crop_num // 2 crop_bottom = crop_num - crop_top img = np.delete(img, range(crop_top), axis=0) img = np.delete(img, range(img.shape[0] - crop_bottom, img.shape[0]), axis=0) elif img.shape[0] < first_bg.shape[0]: fill_num = first_bg.shape[0] - img.shape[0] fill_top = fill_num // 2 fill_bottom = fill_num - fill_top img = np.concatenate([np.zeros([fill_top, width, 3]), img, np.zeros([fill_bottom, width, 3])], axis=0) else: width = int(first_bg.shape[0] / img.shape[0] * img.shape[1]) height = first_bg.shape[0] img = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA) # crop and fill if img.shape[1] > first_bg.shape[1]: crop_num = img.shape[1] - first_bg.shape[1] crop_top = crop_num // 2 crop_bottom = crop_num - crop_top img = np.delete(img, range(crop_top), axis=1) img = np.delete(img, range(img.shape[1] - crop_bottom, img.shape[1]), axis=1) elif img.shape[1] < first_bg.shape[1]: fill_num = first_bg.shape[1] - img.shape[1] fill_top = fill_num // 2 fill_bottom = fill_num - fill_top img = np.concatenate([np.zeros([fill_top, width, 3]), img, np.zeros([fill_bottom, width, 3])], axis=1) new_bg_imgs.append(img) self.bg_imgs = new_bg_imgs assert all(img.shape[0] == first_bg.shape[0] and img.shape[1] == first_bg.shape[1] for img in self.bg_imgs), "配景图片宽和高不一致" self.frame_width = self.bg_imgs[0].shape[1] self.frame_height = self.bg_imgs[0].shape[0] else: self.frame_width = frame_width # 窗口宽度 self.frame_height = frame_height # 窗口高度 self.center_x = self.frame_width / 2 self.center_y = self.frame_height / 2 self.main_curve_width = -1 self.main_curve_height = -1 self.frame_points = [] # 每帧动态点坐标 self.frame_num = frame_num # 帧数 self.seed_num = seed_num # 伪立时种子,竖立以后除光晕外粒子相对位置不动(减少里面精通感) self.seed_points_num = seed_points_num # 主图粒子数 self.scale = scale # 缩放比例 self.wait = wait def curve_function(self, curve): curve_dict = { "heart": self.heart_function, "butterfly": self.butterfly_function, "star": self.star_function, } return curve_dict[curve] def heart_function(self, t, frame_idx=0, scale=5.20): """ 图形方程 :param frame_idx: 帧的索引,左证帧数变换心形 :param scale: 放大比例 :param t: 参数 :return: 坐标 """ trans = 3 - (1 + self.periodic_func(frame_idx, self.frame_num)) * 0.5 # 改造心形饱和度度的参数 x = 15 * (np.sin(t) ** 3) t = np.where((pi < t) & (t < 2 * pi), 2 * pi - t, t) # 翻转x > 0部分的图形到3、4象限 y = -(14 * np.cos(t) - 4 * np.cos(2 * t) - 2 * np.cos(3 * t) - np.cos(trans * t)) ign_area = 0.15 center_ids = np.where((x > -ign_area) & (x < ign_area)) if np.random.random() > 0.32: x, y = np.delete(x, center_ids), np.delete(y, center_ids) # 删除茂密部分的扩散,为了好意思不雅 # 放大 x *= scale y *= scale # 移到画布中央 x += self.center_x y += self.center_y # 原心形方程 # x = 15 * (sin(t) ** 3) # y = -(14 * cos(t) - 4 * cos(2 * t) - 2 * cos(3 * t) - cos(3 * t)) return x.astype(int), y.astype(int) def butterfly_function(self, t, frame_idx=0, scale=5.2): """ 图形函数 :param frame_idx: :param scale: 放大比例 :param t: 参数 :return: 坐标 """ # 基础函数 # t = t * pi p = np.exp(np.sin(t)) - 2.5 * np.cos(4 * t) + np.sin(t) ** 5 x = 5 * p * np.cos(t) y = - 5 * p * np.sin(t) # 放大 x *= scale y *= scale # 移到画布中央 x += self.center_x y += self.center_y return x.astype(int), y.astype(int) def star_function(self, t, frame_idx=0, scale=5.2): n = self.n_star / self.m_star p = np.cos(pi / n) / np.cos(pi / n - (t % (2 * pi / n))) x = 15 * p * np.cos(t) y = 15 * p * np.sin(t) # 放大 x *= scale y *= scale # 移到画布中央 x += self.center_x y += self.center_y return x.astype(int), y.astype(int) def shrink(self, x, y, ratio, offset=1, p=0.5, dist_func="uniform"): """ 带立时位移的抖动 :param x: 原x :param y: 原y :param ratio: 缩放比例 :param p: :param offset: :return: 诊疗后的x,y坐标 """ x_ = (x - self.center_x) y_ = (y - self.center_y) force = 1 / ((x_ ** 2 + y_ ** 2) ** p + 1e-30) dx = ratio * force * x_ dy = ratio * force * y_ def d_offset(x): if dist_func == "uniform": return x + np.random.uniform(-offset, offset, size=x.shape) elif dist_func == "norm": return x + offset * np.random.normal(0, 1, size=x.shape) dx, dy = d_offset(dx), d_offset(dy) return x - dx, y - dy def scatter(self, x, y, alpha=0.75, beta=0.15): """ 立时里面扩散的坐标变换 :param alpha: 扩散因子 - 松散 :param x: 原x :param y: 原y :param beta: 扩散因子 - 距离 :return: x,y 新坐标 """ ratio_x = - beta * np.log(np.random.random(x.shape) * alpha) ratio_y = - beta * np.log(np.random.random(y.shape) * alpha) dx = ratio_x * (x - self.center_x) dy = ratio_y * (y - self.center_y) return x - dx, y - dy def periodic_func(self, x, x_num): """ 卓越周期弧线 :param p: 参数 :return: y """ # 不错尝试换其他的动态函数,达到更有劲量的服从(贝塞尔?) def ori_func(t): return cos(t) func_period = 2 * pi return ori_func(x / x_num * func_period) def gen_points(self, points_num, frame_idx, shape_func): # 用周期函数诡计获取一个因子,用到通盘组成部件上,使得各个部分的变化周期一致 cy = self.periodic_func(frame_idx, self.frame_num) ratio = 10 * cy # 图形 period = 2 * pi * self.m_star if self.curve == "star" else 2 * pi seed_points = np.linspace(0, period, points_num) seed_x, seed_y = shape_func(seed_points, frame_idx, scale=self.scale) x, y = self.shrink(seed_x, seed_y, ratio, offset=2) curve_width, curve_height = int(x.max() - x.min()), int(y.max() - y.min()) self.main_curve_width = max(self.main_curve_width, curve_width) self.main_curve_height = max(self.main_curve_height, curve_height) point_size = np.random.choice([1, 2], x.shape, replace=True, p=[0.5, 0.5]) tag = np.ones_like(x) def delete_points(x_, y_, ign_area, ign_prop): ign_area = ign_area center_ids = np.where((x_ > self.center_x - ign_area) & (x_ < self.center_x + ign_area)) center_ids = center_ids[0] np.random.shuffle(center_ids) del_num = round(len(center_ids) * ign_prop) del_ids = center_ids[:del_num] x_, y_ = np.delete(x_, del_ids), np.delete(y_, del_ids) # 删除茂密部分的扩散,为了好意思不雅 return x_, y_ # 多脉络扩散 for idx, beta in enumerate(np.linspace(0.05, 0.2, 6)): alpha = 1 - beta x_, y_ = self.scatter(seed_x, seed_y, alpha, beta) x_, y_ = self.shrink(x_, y_, ratio, offset=round(beta * 15)) x = np.concatenate((x, x_), 0) y = np.concatenate((y, y_), 0) p_size = np.random.choice([1, 2], x_.shape, replace=True, p=[0.55 + beta, 0.45 - beta]) point_size = np.concatenate((point_size, p_size), 0) tag_ = np.ones_like(x_) * 2 tag = np.concatenate((tag, tag_), 0) # 光晕 halo_ratio = int(7 + 2 * abs(cy)) # 收缩比例随周期变化 # 基础光晕 x_, y_ = shape_func(seed_points, frame_idx, scale=self.scale + 0.9) x_1, y_1 = self.shrink(x_, y_, halo_ratio, offset=18, dist_func="uniform") x_1, y_1 = delete_points(x_1, y_1, 20, 0.5) x = np.concatenate((x, x_1), 0) y = np.concatenate((y, y_1), 0) # 炸裂感光晕 halo_number = int(points_num * 0.6 + points_num * abs(cy)) # 光晕点数也周期变化 seed_points = np.random.uniform(0, 2 * pi, halo_number) x_, y_ = shape_func(seed_points, frame_idx, scale=self.scale + 0.9) x_2, y_2 = self.shrink(x_, y_, halo_ratio, offset=int(6 + 15 * abs(cy)), dist_func="norm") x_2, y_2 = delete_points(x_2, y_2, 20, 0.5) x = np.concatenate((x, x_2), 0) y = np.concatenate((y, y_2), 0) # 延长光晕 x_3, y_3 = shape_func(np.linspace(0, 2 * pi, int(points_num * .4)), frame_idx, scale=self.scale + 0.2) x_3, y_3 = self.shrink(x_3, y_3, ratio * 2, offset=6) x = np.concatenate((x, x_3), 0) y = np.concatenate((y, y_3), 0) halo_len = x_1.shape[0] + x_2.shape[0] + x_3.shape[0] p_size = np.random.choice([1, 2, 3], halo_len, replace=True, p=[0.7, 0.2, 0.1]) point_size = np.concatenate((point_size, p_size), 0) tag_ = np.ones(halo_len) * 2 * 3 tag = np.concatenate((tag, tag_), 0) x_y = np.around(np.stack([x, y], axis=1), 0) x, y = x_y[:, 0], x_y[:, 1] return x, y, point_size, tag def get_frames(self, shape_func): for frame_idx in range(self.frame_num): np.random.seed(self.seed_num) self.frame_points.append(self.gen_points(self.seed_points_num, frame_idx, shape_func)) frames = [] def add_points(frame, x, y, size, tag): highlight1 = np.array(self.highlight_points_color_1, dtype='uint8') highlight2 = np.array(self.highlight_points_color_2, dtype='uint8') base_col = np.array(self.base_color, dtype='uint8') x, y = x.astype(int), y.astype(int) frame[y, x] = base_col size_2 = np.int64(size == 2) frame[y, x + size_2] = base_col frame[y + size_2, x] = base_col size_3 = np.int64(size == 3) frame[y + size_3, x] = base_col frame[y - size_3, x] = base_col frame[y, x + size_3] = base_col frame[y, x - size_3] = base_col frame[y + size_3, x + size_3] = base_col frame[y - size_3, x - size_3] = base_col # frame[y - size_3, x + size_3] = color # frame[y + size_3, x - size_3] = color # 高光 random_sample = np.random.choice([1, 0], size=tag.shape, p=[self.highlight_rate, 1 - self.highlight_rate]) # tag2_size1 = np.int64((tag <= 2) & (size == 1) & (random_sample == 1)) # frame[y * tag2_size1, x * tag2_size1] = highlight2 tag2_size2 = np.int64((tag <= 2) & (size == 2) & (random_sample == 1)) frame[y * tag2_size2, x * tag2_size2] = highlight1 # frame[y * tag2_size2, (x + 1) * tag2_size2] = highlight2 # frame[(y + 1) * tag2_size2, x * tag2_size2] = highlight2 frame[(y + 1) * tag2_size2, (x + 1) * tag2_size2] = highlight2 for x, y, size, tag in self.frame_points: frame = np.zeros([self.frame_height, self.frame_width, 3], dtype="uint8") add_points(frame, x, y, size, tag) frames.append(frame) return frames def draw(self, times=10): frames = self.get_frames(self.curve_function(self.curve)) for i in range(times): for frame in frames: frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) if len(self.bg_imgs) > 0 and self.set_bg_imgs: frame = cv2.addWeighted(self.bg_imgs[i % len(self.bg_imgs)], self.bg_weight, frame, self.curve_weight, 0) cv2.imshow(self.title, frame) cv2.waitKey(self.wait) if __name__ == '__main__': import yaml settings = yaml.load(open("./settings.yaml", "r", encoding="utf-8"), Loader=yaml.FullLoader) if settings["wait"] == -1: settings["wait"] = int(settings["period_time"] / settings["frame_num"]) del settings["period_time"] times = settings["times"] del settings["times"] heart = HeartSignal(seed_num=5201314, **settings) heart.draw(times)
第三步聚色网,同目次下的settings.yaml:
# 颜料:RGB三原色数值 0~255 # 竖立高光时,尽量收受接近主色的颜料,看起来会和洽少量 # 视频里的蓝颜色 #base_color: # 主色 默许玫瑰粉 # - 30 # - 100 # - 100 #highlight_points_color_1: # 高光粒子色1 默许淡紫色 # - 150 # - 120 # - 220 #highlight_points_color_2: # 高光粒子色2 默许淡粉色 # - 128 # - 140 # - 140 base_color: # 主色 默许玫瑰粉 - 228 - 100 - 100 highlight_points_color_1: # 高光粒子色1 默许淡紫色 - 180 - 87 - 200 highlight_points_color_2: # 高光粒子色2 默许淡粉色 - 228 - 140 - 140 period_time: 1000 * 2 # 周期技术,默许1.5s一个周期 times: 5 # 播放周期数,一个周期卓越1次 frame_num: 24 # 一个周期的生成帧数 wait: 60 # 每一帧停留技术, 竖立太短可能形成闪屏,竖立 -1 自动竖立为 period_time / frame_num seed_points_num: 2000 # 组成主图的种子粒子数,总粒子数是这个的8倍傍边(包括散点和光晕) highlight_rate: 0.2 # 高光粒子的比例 frame_width: 720 # 窗口宽度,单元像素,竖立配景图片后失效 frame_height: 640 # 窗口高度,单元像素,竖立配景图片后失效 scale: 9.1 # 主图缩放比例 curve: "star" # 图案类型:heart, butterfly, star n_star: 7 # n-角型/星,要是curve竖立成star才会告成,五角星:n-star:5, m-star:2 m_star: 3 # curve竖立成star才会告成,n-角形 m-star都是1,n-角星 m-star大于1,比如 七角星:n-star:7, m-star:2 或 3 title: "Amadeus" # 仅援手字母,华文乱码 background_img_dir: "src/center_imgs" # 这个目次放弃配景图片,淡薄像素在400 X 400以上,不然可能报错,要是图片委果小,不错诊疗上头scale把爱心放松 set_bg_imgs: false # true或false,竖立false用默许黑配景 bg_img_scale: 0.6 # 0 - 1,配景图片缩放比例 bg_weight: 0.4 # 0 - 1,配景图片权重,可看作念透明度吧 curve_weight: 1 # 同上 # ======================== 推选参数: 径直复制数值替换上头临应参数 ================================== # 蝴蝶,报错很可能是蝴蝶缩放大小超出窗口宽和高 # curve: "butterfly" # frame_width: 800 # frame_height: 720 # scale: 60 # base_color: [100, 100, 228] # highlight_points_color_1: [180, 87, 200] # highlight_points_color_2: [228, 140, 140]本站仅提供存储职业,通盘履行均由用户发布,如发现存害或侵权履行,请点击举报。